人教版高中数学A版 必修第2册《第七章 复数》大单元整体教学设计

2024年9月1108:32:51发布者:gggyyy 18 views 举报
总字数:约23479字
第1页

第2页

第3页

第4页

第5页

第6页

第7页

第8页

第9页

第10页

1

人教版高中数学 A 版 必修第 2 册《第七章 复数》大单元

整体教学设计

一、内容分析与整合

二、《普通高中数学课程标准(2017 年版 2020 年修订)》分解

三、学情分析

四、大主题或大概念设计

五、大单元目标叙写

六、大单元教学重点

七、大单元教学难点

八、大单元整体教学思路

九、学业评价

十、大单元实施思路及教学结构图

十一、大情境、大任务创设

十二、学科实践与跨学科学习设计

十三、大单元作业设计

十四、“教-学-评”一致性课时设计

2

十五、大单元教学反思

一、内容分析与整合

(一)教学内容分析

本单元的教学内容聚焦于人教版数学必修第二册中的《第七章 复数》,这一章节不仅在数学学科内部

占据着举足轻重的地位,也是连接纯数学与实际应用的一座桥梁。复数,作为数学领域的一个重要概念,其

引入不仅极大地扩展了数系的范畴,更为解决诸多实际问题提供了强有力的数学工具。在物理学、工程学、

信号处理乃至经济学等多个领域,复数都发挥着不可替代的作用,它以其独特的魅力和广泛的应用背景,吸

引着无数学者与工程师深入研究。

本章内容精心设计,分为三个核心小节: 7.1 复数的概念,这一部分将带领学生初探复数的神秘面纱,

理解复数的基本概念、表示方法及其在数轴上的几何意义,为后续学习奠定坚实的基础; 7.2 复数的四则运

算,则深入到复数的运算层面,通过详细讲解复数的加、减、乘、除等基本运算规则,使学生掌握复数运算

的技巧与方法,体会复数运算的独特之处; 7.3 复数的三角表示,则是本章的又一亮点,它不仅揭示了复数

与三角函数之间的深刻联系,还为学生提供了从几何和三角角度理解复数的全新视角,进一步丰富了复数的

内涵与应用范围。

本章还特别设置了“阅读与思考《代数基本定理》”和“探究与发现《 1 n 次方根》”两个环节,旨

在通过引导学生自主阅读和探究,深化对复数理论背后深层次数学原理的理解,同时培养学生的数学思维和

3

探索精神。代数基本定理作为复数理论的一个重要基石,其探讨有助于学生从宏观上把握复数在数学体系中

的地位与价值;而“ 1 n 次方根”的探究,则是一个生动有趣的实践案例,让学生在动手计算中直观感受

复数解的 与多 样性 他们 对数学 的感 追求

《第七章 复数》的教学内容不仅是一次数学 知识 的学习之 ,更是一 思维与视 展之 。通过

学习,学生不仅 能够 掌握复数的基本概念、运算方法及几何、三角表示,还 深刻理解数的扩展过程,体会

到数学理论与实际应用之间的 紧密 联系,为 他们未来 在数学及其 科学领域的进一步探索 打下 坚实的基础。

复数的学习,无 是学生数学 养提 升道路 上的一 重要

(二)单元内容分析

在数学的 长河 中,数系的扩 是一个不 探索与发现的过程。从 初的自 数,到 数的引入, 到有

理数、实数的 完备 化, 一次数系的扩 标志 着数学理论的深化与应用领域的 拓宽 。而 我们踏 入了复

数的 奇妙世界 ,这不仅是数系扩 的又一 ,更是数学理论与实际应用 相结合 范。

7.1 复数的概念部分, 我们追溯 了数系扩 程,深刻体会到复数作为实数系扩 的必 然性 与重要

复数的定义及其代数 形式( a+bi 和几何 形式( 通过 面上的点 或向量 表示 我们 提供了理解复数的

重视角。 共轭 作为复数的基本 属性 ,不仅丰富了复数的内涵,也为后续的复数运算奠定了坚实基础。

7.2 复数的四则运算是本单元的核心内容。加法、减法、乘法、除法的运算规则 看似简 单,实则 蕴含

复数的深刻本 。特别是复数的 在运算中的应用,不仅 化了计算过程,更揭示了复数运算背后的几何意

义。通过实例分 我们得 以直观感受复数运算与几何 变换 之间的 紧密 联系,进一步加深了对复数运算的理

4

解与掌握。

7.3 复数的三角表示则将 我们 带入了复数的 一个维度。复数的三角 形式( r(cosθ+isinθ) 不仅与代

形式相互转换 ,更在复数乘 与根的运算中展现 其独特魅力。特别是复数乘 的三角表示,通过

乘与 角的 加, 简洁明 了地揭示了复数乘法的几何本 。而代数基本定理的探讨,则让 我们站 在更

的角度 视复数域中的多 项式 方程,理解其解的 ,感受数学理论的 严谨 与和

在探究与发现部分,《 1 n 次方根》引领 我们 深入探索复数域中的 奇妙 1 n 次方根在复数域

中的多 表示,不仅 拓宽 我们 的数学视 ,更让 我们 到了单位根在几何 图形 中的 美妙 应用, 如正

构造 等,深刻体现了复数理论与几何直观的 完美结合

复数单元的学习不仅是一次数学 知识 积累 过程,更是一 数学思维与方法的 训练 。它让 我们 在数

交织 中,感受到了数学的魅力与无

(三)单元内容整合

本单元以复数的概念为 点, 步引导学生深入到复数的运算和多 表示方法之中,旨在通过代数和几

何两个不同角度,全面而深刻地揭示复数的本 和丰富内涵。复数作为数学的一个重要分 ,不仅在数

学领域内有着广泛的应用,还在物理、工程等多个学科中发挥着不可替代的作用。本单元的学习对于学生数

养的提 以及后续 专业课 程的学习都具有重要意义。

在代数方面,本单元从复数的定义 发,详细 阐述 了复数的加减、乘除等基本运算规则,以及复数方程

解方法。通过一系 精心设计的例题和习题, 助学生 步掌握复数的代数运算技巧,培养 他们 的计算

5

力和问题解决 力。本单元还 重引导学生探索复数运算的规 复数的乘除运算与三角 形式 的联系,

使 他们能够 在理解的基础上 灵活 运用复数 知识

在几何方面,本单元通过复 面的概念,将复数与几何 图形相结合 ,直观展示了复数的几何意义。学生

将学习到 何用复 面上的点表示复数,以及 用复数的几何表示进 复数的加减、乘除等运算。这

几何化的表示方法不仅有助于学生更直观地理解复数,还 能激 他们 想象能 力和几何直观思维。

除了代数和几何两个角度的深入学习,本单元还 重培养学生的探究 力和 新思维。通过设置“阅读

与思考”、“探究与发现”等环节,引导学生自主探索复数的 历史 背景、应用实例以及与其 数学 知识 的联

系。这 环节不仅 展了学生的 知识 面,还 发了 他们 对数学的 趣和 好奇 心,使 他们 在探究过程中不

现新的问题、提 新的观点,从而培养 他们 新意 和实践 力。

整合 过程中,本单元 知识 的内在联系和 逻辑顺序 确保 学生 能够 在理解的基础上掌握复数的基本

理论和运算技 。通过 循序渐 进的学习 安排 和丰富多 的教学 动,使学生在掌握复数 知识 的同时,也

升他们 的数学思维 力、问题解决 力和自主学习 力。本单元的学习将为学生后续的数学学习和 专业 发展

奠定坚实的基础,助力 他们 在数学的广 阔天 地中不 探索、不 断前行

二、《普通高中数学课程标准( 2017 年版 2020 年修订)》分解

根据《 中数学 标准( 2017 2020 订) 》,本单元的教学 目标 可分解为以 几个方

面:

数学 抽象 :学生 能够 理解复数的概念,掌握复数的代数和几何表示方法,体会数系的扩 过程。

6

逻辑推 理:学生 能够 根据复数的定义和 性质 复数的运算法则,理解复数运算的几何意义。

数学运算:学生 能够熟练 复数的四则运算,掌握复数 的计算方法,理解复数乘 的三角表示。

直观 想象 :学生 能够利 用复数的几何和三角表示方法,直观理解复数的运算和 性质 ,体会复数在解决实

际问题中的应用。

数据分 虽然 本单元不直接 及数据分 学生可以通过复数在物理学、工程学等领域的应用实例,

体会数据分 的重要

三、学情分析

(一)已知内容分析

在之 的学习 阶段 ,学生 们已 经系 地掌握了实数系的基本概念和运算规则, 包括 实数的加减乘除、

对值、 方根等,这为后续学习复数奠定了坚实的数学基础。学生 对代数 的化 因式 分解等代数技巧

也有了一定的掌握,这 在复数的运算和化 过程中同 具有重要意义。学生 还具 了一定的几何直

观和 想象能 力, 能够 通过 图形 图像来辅 助理解和解决数学问题,这为学习复数的几何表示方法提供了

有力的 支撑

(二)新知内容分析

本单元的新 内容主要 包括 复数的概念、运算规则和表示方法。学生 要理解复数作为数系扩 物,

是实数系的一个自 然延伸 ,它 包含 了实数和 数两部分,具有更为丰富的数学 结构 性质 。学生 要掌握复

数的代数和几何表示方法, 包括 复数的 标准形式 、极 坐标形式 等,以及它 在复 面上的几何表示。学生还

7

熟练 复数的四则运算, 包括 加法、减法、乘法和除法,以及复数的乘方和 方等运算。学生还

了解复数的三角表示及其与代数 形式 之间的 转换关 系,理解复数在单位 上的几何意义,以及复数在三角函

数、 数函数等领域的应用。

(三)学生学习能力分析

大多数 中生 经具 了一定的 抽象 思维 力和 逻辑推 力, 能够 理解和接受新概念和新 知识 他们

于通过观 、实 理等方 式来 探索和发现数学规 ,具 了一定的自主学习和 作学习的 力。

复数概念的 抽象性 和运算规则的复 杂性 ,部分学生在学习过程中可 到一定的 困难 。具体 来说 他们

能难 以理解和接受 数的 在和意义,对复数的几何表示和三角表示感到 困惑 ,以及在复数的四则运算中

错误 。教师 分了解学生的学习特点和 困难 用多 教学方法和手 发学生的学习 趣和

他们克服 学习 障碍

(四)学习障碍突破策略

为了 助学生更 地理解和掌握复数 知识 突破 学习 障碍 ,教师可以 采取 下策略

直观 示:通过几何 图形 和动 态演 示等手 ,直观展示复数的概念和运算过程。例 用复 面上的

点和 向量来 表示复数,通过动 态演 示复数的加法和乘法运算过程, 助学生 建立 复数的几何直观。教师还可

用数学 软件或 工具 来绘制 复数的 图像 和动 ,进一步加深学生的理解和 记忆

实例分 结合 物理学、工程学等领域的应用实例,讲解复数在实际问题中的应用价值。例 ,在物理

学中,复数 用于表示 动和 动;在工程学中,复数 用于 电路 和信号处理等领域。通过讲解这

8

际应用案例,可以 发学生的学习 趣和探索 欲望 ,使 他们 更加深入地理解和掌握复数 知识

作学习: 组织 学生进 组合 作学习,通过讨论和 交流促 彼此 之间的理解和 发。在小 学习中,

学生可以 互相 的学习心 和体会, 同解决学习中的 困难 和问题。教师还可以设置一 具有 挑战性

的问题 或任务 鼓励 之间进 行合 作和 竞争 ,进一步 发学生的学习 热情

分层 导: 对不同学生的学习 情况 水平 定个 化的学习计 策略 。对于基础 较弱

学生,教师可以提供更多的 导和 助, 他们巩固 实数系的基础 知识 和代数技 ;对于 强的学生,

教师可以提供更多的 展和 挑战性 问题,引导 他们 深入探索复数的数学 结构 性质 。通过分层 导,可以

保每 个学生都 在原有基础上 取得 进步和提

强化实践: 鼓励 学生通过大 习和实践 来巩固所 知识 。教师可以 置一 具有 习题和

,要 学生在规定的时间内 完成并 。教师还可以 组织 些课堂练 习和 测验活 动,及时 检验 学生的学

效果 和掌握 情况 。通过强化实践 训练 ,可以 助学生更 地掌握复数的运算规则和表示方法。

引入现代技 用现代数学 软件 和工具 来辅 助复数的教学和学习。例 ,使用 MATLAB Python

数学 软件来 复数的计算和可视化展示; 用在 线 数学 资源 和学习 提供更加丰富和多 化的学习

资源 。通过引入现代技 ,可以进一步丰富教学方 和内容,提 学生的学习 趣。

中学生在学习复数过程中可 能遇 到的学习 障碍 困难 ,教师可以 采取 教学 策略 和手 段来帮

他们突破障碍 、提 学习 效果 。通过直观 示、实例分 作学习、分层 导、强化实践以及引入现代技

策略 运用,可以 发学生的学习 趣和 ,提 高他们 抽象 思维 力和 逻辑推 力,使

9

地理解和掌握复数 知识

四、大主题或大概念设计

本单元的大主题 大概念可以设计为“复数:数系的扩 与运算的 展”。通过这个主题 概念的设计,

引导学生深入理解复数作为数系扩 物及其在运算和表示方面的独特 优越 。通过探讨复数在实际

问题中的应用价值,培养学生的应用意 力。

五、大单元目标叙写

知识 与技 能目标 :学生 能够 理解复数的概念及其与实数的 系;掌握复数的代数和几何表示方法; 熟练

复数的四则运算及其 的计算;理解复数的三角表示及其与代数 形式 之间的 转换关 系。

过程与方法 目标 :通过探究与发现、 作学习等方 培养学生的探究 力和 团队 作精神;通过实例分

和问题解决培养学生的应用意 新思维。

度与价值观 目标 发学生对数学的 趣和 ;培养学生的科学 度和 严谨 精神;通过复数在

实际问题中的应用实例培养学生的 感和使 感。

六、大单元教学重点

复数的概念与表示:理解复数的定义及其与实数的 系;掌握复数的代数和几何表示方法。

复数的四则运算:掌握复数的加法、减法、乘法、除法运算规则;理解复数运算的几何意义及其与

系。

复数的三角表示:理解复数的三角 形式 及其与代数 形式 之间的 转换关 系;掌握复数乘 的三角表示

方法。

10

七、大单元教学难点

复数概念的 抽象性 于复数概念的 抽象性较 强,部分学生可 在理解上 困难

复数运算的复 杂性 :复数运算 及到代数和几何两个方面的 知识 和技 求较高 ,部分学生可 在掌握

度。

复数三角表示的 转换 :复数三角表示与代数 形式 之间的 转换关 为复 抽象 程度 较高 要学生进

深入理解和实践。

八、大单元整体教学思路

一、教学背景与 目标

复数是 中数学中一个重要 独特的内容,它扩展了实数系,为解决一 特定的方程问题提供了新的工

具和方法。在《 中数学 标准( 2017 2020 订) 》中,复数 被纳 入数学 程的核心内容

之一,旨在培养学生的数学 抽象 逻辑推 理、数学运算等核心 养。

本大单元 体教学思 人教版 中数学必修第二册《第七章 复数》展 包括 复数的概念、四则

运算、三角表示及探究与发现等部分。通过系 教学,使学生理解复数的概念及其数学背景,掌握复数的基

本运算,理解复数的几何意义和三角表示,培养学生的数学思维和解决问题的 力。

二、教学内容分

7.1 复数的概念

核心概念:理解数系的扩 过程, 复数的基本 形式( a + bi ,理解复数的实部和 部, 知道共轭

复数的概念。

总页数:48
提示:下载前请核对题目。客服微信:diandahome
标题含“答案”文字,下载的文档就有答案
特别声明:以上内容(如有图片或文件亦包括在内)为“电大之家”用户上传并发布,仅代表该用户观点,本平台仅提供信息发布。