人教版初中八年级数学上册《第十三章 轴对称》大单元整体教学设计

2024年9月1108:07:42发布者:gggyyy 27 views 举报
总字数:约23626字
第1页

第2页

第3页

第4页

第5页

第6页

第7页

第8页

第9页

第10页

1

人教版初中八年级数学上册《第十三章 轴对称》大单元整

体教学设计

一、内容分析与整合

二、《义务教育课程标准(2022 年版)》分解

三、学情分析

四、大主题或大概念设计

五、大单元目标叙写

六、大单元教学重点

七、大单元教学难点

八、大单元整体教学思路

九、学业评价

十、大单元实施思路及教学结构图

十一、大情境、大任务创设

十二、学科实践与跨学科学习设计

十三、大单元作业设计

十四、“教-学-评”一致性课时设计

十五、大单元教学反思

2

一、内容分析与整合

(一)教学内容分析

人教版初中八年级数学上册的《第十三章 轴对称》是几何学领域的一个重要章节,它不仅深入探讨了

轴对称这一核心概念,还通过丰富多样的教学内容和实践活动,全面培养学生的几何直观、空间观念和逻辑

推理能力。本章内容设计精心,层次分明,旨在引导学生从理论到实践,逐步掌握轴对称的相关知识,并学

会将其应用于解决实际问题中。

13.1 节“轴对称”中,教材首先介绍了轴对称图形的基本概念和性质,包括对称轴、对称点等关键

术语。通过生动的实例和图形展示,让学生直观感受到轴对称图形的美感,激发他们的学习兴趣。这一节的

学习为后续深入学习轴对称的相关知识打下了坚实的基础。

13.2 节“画轴对称图形”中,教材着重教授学生如何根据给定的图形和对称轴,准确地画出其轴对

称图形。这一过程不仅培养了学生的作图能力,还锻炼了他们的空间想象能力。通过信息技术应用,如使用

计算机软件进行轴对称图案设计,学生可以在实践中体验到数学学习的乐趣,进一步增强学习的实践性和趣

味性。

13.3 节“等腰三角形”是本章的重点内容之一。教材深入探讨了等腰三角形的性质,包括等边对等角 、

三线合一等重要定理,以及等腰三角形的判定方法。通过实验与探究,学生可以更加直观地理解三角形中边

与角之间的不等关系,从而加深对等腰三角形性质的理解。

3

13.4 节“课题学习 最短路径问题”中,教材将轴对称性质与实际问题相结合,引导学生运用所学知

识解决最短路径问题。这一过程不仅培养了学生的应用意识,还提升了他们的问题解决能力。通过这一章节

的学习,学生可以更加深刻地体会到数学在现实生活中的应用价值。

《第十三章 轴对称》不仅涵盖了基础的几何知识和作图技能,还融入了逻辑推理、空间想象以及应用

实践能力等多方面的要求。通过本章的学习,学生可以在掌握轴对称相关知识的同时,全面提升自己的几何

直观、空间观念和推理能力。教师在教学过程中应注重理论与实践的结合,引导学生积极参与各种学习活动,

让他们在探索中发现数学的魅力,从而更加热爱数学学习。

(二)单元内容分析

本单元内容结构清晰,逻辑严密,围绕“轴对称”这一核心概念,逐步展开了一系列深入且富有层次的

学习活动。从轴对称的基本概念出发,学生首先被引导理解对称轴的定义及其基本性质,为后续的学习

了坚实的理论基础。

单元内容过 体图形的 绘制 和应用。这一 分的学习不仅要求学生能 够熟练 掌握轴对称图形的 绘制

,还通过丰富的实例和 习,引导学生深入探索轴对称图形在现实生活中的应用,从而增强其对轴对称

概念的直观理解和实际运用能力。

在掌握了轴对称图形的基本 绘制 和应用之后,单元内容进一步深入到 特殊 图形 —— 等腰三角形的性质与

判定。这一 分的学习是轴对称概念的一个重要应用, 是学生几何学习中的一个重要 。通过 详细讲

解等腰三角形的性质、判定方法以及相关的 明过程,学生不仅能 更加深入地理解轴对称在几何图形中的

4

体现,还能 培养 严密的逻辑推理能力和几何 明技

单元内容以实际应用问题 —— 最短路径的求解作为 收尾 ,将轴对称的学习提升到了一个 高度 。这一

分的学习要求学生能 够综 合运用 面所学的轴对称知识,解决现实生活中的实际问题。通过最短路径问题

的求解,学生不仅能 更加深刻地体会到轴对称在现实生活中的应用价值,还能 锻炼其问题解决能力和

新思维

本单元内容形 了一个 完整 的知识体系,各 分内容之间 互独立又紧 系。从轴对称的基本概念

体图形的 绘制 和应用, 特殊 图形 等腰三角形 的性质与判定,最后以实际应用问题 最短路径

收尾 ,这一系列的学习活动不仅 帮助 学生全面掌握了轴对称这一核心概念下的多 维度 学习内容,还培养了其

几何直观、逻辑推理、问题解决等多方面的数学 养。通过这样的学习,学生不仅能 更加深入地理解轴对

称的魅力和价值,还能 为后续的几何学习打下坚实的基础。

(三)单元内容整合

合本单元内容时, 们深刻意识到知识的系 性和 连贯 性对于学生学习的重要性。 们精心设计了

一系列教学活动,旨在 帮助 学生构 建完整 连贯 的知识体系。

们从生活中的轴对称现象入 ,通过展示自 然界 术作 中的轴对称图形,引发学生的 好奇 心和求

。这种生活 的引入方 不仅能 激发学生的学习兴趣,还能 使他们深刻体会到数学与生活的

系。

们注重通过动 手操 作和信息技术应用 加深学生对轴对称图形的 识和理解。 鼓励 学生 自动

5

作轴对称图形,通过实践 感受轴对称的魅力和 点。 们还 用信息技术 手段 ,如多 体课件和几何画

等, 帮助 学生更加直观地观 和分 轴对称图形,从而进一步加深对这一概念的理解。

在学生对轴对称图形有了 为深入的 识后, 们进一步引导他们探究等腰三角形的性质与判定。这一

分的内容不仅是对轴对称图形的深 展, 是提升学生逻辑推理和几何 明能力的重要 径。 们通

过一系列精心设计的 明题和 习题,引导学生逐步掌握等腰三角形的性质和判定方法,培养他们的逻辑推

理和几何 明能力。

们将最短路径问题作为本单元的探究重点之一。通过引导学生探究如何在轴对称图形中 到最短路径,

们不仅能 进一步 巩固 他们对轴对称图形的理解,还能 培养他们的应用意识和问题解决能力。这一

的内容不仅 挑战 性, 激发学生的学习兴趣和探索 欲望

合本单元内容的过程中, 始终 注重各 分内容之间的过 衔接 们通过精心设计的教学活

动和 习题,确 学生在掌握 分内容的基础上能 够顺利 到下一 分内容的学习,从而确 知识的

连贯 性和系 性。

本单元的内容 策略 注重知识的系 性和 连贯 性,通过生活 的引入、动 手操 作和信息技术应用、等

腰三角形的性质与判定以及最短路径问题的探究等一系列教学活动,旨在 帮助 学生构 建完整 连贯 的知识体

系,并提升他们的逻辑推理、几何 明以及应用意识和问题解决能力。

二、《义务教育课程标准( 2022 年版)》分解

根据《义 数学课程 2022 年版 》的要求,本单元的教学 目标 可分解为以下几个方面

6

符号 意识 通过轴对称图形和等腰三角形的 符号表 示,培养学生的 符号 意识。

几何直观与空间观念 通过观 绘制 和应用轴对称图形,发展学生的几何直观和空间观念。

推理能力 通过等腰三角形的性质与判定、最短路径问题的探究等活动,提升学生的逻辑推理能力。

模型 意识与应用意识 通过实际问题的解决 如最短路径问题 ,培养学生的 模型 意识和应用意识。

创新 意识 :鼓励 学生用轴对称进行图案设计等活动,培养学生的 创新 意识和 美能力。

三、学情分析

(一)已知内容分析

学生 已经 学习了基本的几何图形,包括点、线、面、角、三角形等,并对这 图形的性质有了初步的了

解。他们掌握了 尺规 作图等基本的作图技能,能 运用这 技能进行 单的几何构 。学生 学习了一

辑推理方法,如 反证 法、 合法等,这 方法对于他们理解和解决几何问题 有重要的 帮助 。学生还 具备

一定的生活 验和数学应用意识,能 理解和解决一 些简 单的实际问题,这对于他们进一步学习几何知识并

将其应用于实际生活中 有重要的 进作用。

(二)新知内容分析

本单元的 知内容 要包括轴对称图形的性质与判定、等腰三角形的性质与判定、以及最短路径问题的

解决 策略 等。这 内容 是对学生 有知识的深 展, 是对他们数学 养和能力的进一步提升。轴对

称图形的性质与判定是学生学习几何图形 变换 的重要基础,掌握这 分内容对于他们理解几何图形的对称性

和进行图形 变换具 有重要的 帮助 。等腰三角形的性质与判定 是三角形知识的重要 组成部 分,学习这 分内

容可以 帮助 学生更深入地理解三角形的性质和 点。最短路径问题的解决 策略则 是将几何知识与实际问题相

7

结合的重要内容,通过学习这 分内容,学生可以更 地将几何知识应用于实际生活中。

(三)学生学习能力分析

八年级学生 正处 于逻辑 思维 思维快速 发展的 阶段 。他们 有一定的观 、分 和解决问题的能力,

通过观 和分 析找 出问题的关键所在,并运用所学知识进行解决。 于个体 差异 在, 分学生在几

何直观、空间想象和逻辑推理等方面可能 在一定的 困难 。这 些困难 可能 于学生个体 风格 差异

可能 于他们在学习过程中 缺乏足够 习和 反馈 。在教学过程中,教师应 考虑 学生的实际 情况 求,

用多样 的教学方法和 手段来促 进学生的全面发展。

(四)学习障碍突破策略

对学生在学习过程中可能 到的学习 障碍 ,如几何直观不 、逻辑推理 困难 等,可以 采取 以下 突破策

略:

直观 示与动 手操 作相结合

为了 帮助 学生更 地理解和掌握轴对称图形的性质,教师可以 用实 物模型 、多 体课件等直观 手段

示。通过展示轴对称图形的对称性和 变换 过程,学生可以更加直观地理解轴对称图形的性质和判定方法。

教师还可以 组织 学生进行动 手操 作活动,如画轴对称图形、 作轴对称 模型 等。通过动 手操 作,学生可以更

加深入地理解轴对称图形的性质和 点,并培养自己的几何直观和空间想象能力。

问题引导与探究学习相结合

在教学过程中,教师可以设 一系列 有层次性的问题,引导学生逐步深入 思考 。通过问题的引导和探

8

究学习的方 ,学生可以更加 动地参与到学习过程中,积极 思考 寻找 问题的 案。教师还可以 鼓励 学生

进行 小组 合作学习和自 探究活动。通过 小组 合作和自 探究,学生可以相 互交流 和分 自己的想法和发现,

培养自己的问题解决能力和 创新思维

别辅 导与 解相结合

分学生在几何直观、空间想象和逻辑推理等方面 在的 薄弱环 节,教师可以进行个 别辅 导和强

训练 。通过个 别辅 导,教师可以更加深入地了解学生的学习 情况 求,并 对学生的 情况 进行有

性的 导和 帮助 。教师还可以在课 上进行 解和 答疑 活动。通过 解和 答疑 ,教师可以确 保每位

学生 上教学进 并掌握所学知识。在 解过程中,教师还可以注重引导学生进行 思考 和讨论,培养学

生的逻辑 思维 表达 能力。

多样 教学方法和 手段 的应用

在教学过程中,教师还可以 用多样 的教学方法和 手段来促 进学生的全面发展。例如,教师可以

几何画 等软件进行 辅助 教学,让学生更加直观地理解几何图形的性质和 变换 过程 教师还可以 组织 学生进

行数学实验和实践活动,让学生 亲身 体验几何知识的应用和价值 教师还可以注重培养学生的数学应用意识,

引导学生将所学的几何知识应用于实际生活中。

对八年级学生的学习 点和 知内容的要求,教师可以 采取 直观 示与动 手操 作相结合、问题引导与

探究学习相结合、个 别辅 导与 解相结合等 策略来帮助 学生 突破 学习 障碍 并提 学习 效果 。通过这 些策

的实 ,相信学生能 地掌握轴对称图形的性质与判定、等腰三角形的性质与判定以及最短路径问题

9

的解决 策略 等核心知识,并为后续的几何学习打下坚实的基础。在教学过程中,教师还应注重培养学生的逻

思维 思维 、几何直观和空间想象能力等方面的 养和能力,为学生的全面发展 定坚实的基础。

四、大主题或大概念设计

本单元的 大主 或大 概念为“轴对称与几何 变换 ”。围绕这一 或大 概念展开教学活动可以 帮助 学生

地理解轴对称图形的性质和应用价值 同时引导学生从几何 变换 的角 度审视 和理解数学问题进而培养他

们的几何直观和空间想象能力。

五、大单元目标叙写

知识与技能 学生能 理解轴对称图形的性质并能 够绘制简 单的轴对称图形 掌握等腰三角形的性质与

判定方法并能 解决相关问题 理解最短路径问题的求解 策略 并能 应用于实际问题中。

过程与方法 :经历 从观 、分 到解决问题的 完整 过程 通过动 手操 作和合作探究活动发展几何直观和

空间想象能力 通过逻辑推理和 明活动提升数学 养和 思维 能力。

态度 与价值观 感受轴对称图形的美感和应用价值 体验数学学习的乐趣和 成就 培养严

态度 和实 求是的精 神风貌

六、大单元教学重点

轴对称图形的性质与判定 理解轴对称图形的定义和性质并能 生活中的轴对称现象 掌握 绘制

对称图形的方法并能 进行 单的应用。

等腰三角形的性质与判定 理解等腰三角形的定义和性质 如等边对等角、三线合一等 ); 掌握等腰三

角形的判定方法并能 解决相关问题。

10

最短路径问题的求解 策略: 理解最短路径问题的 背景 和求解方法 运用轴对称性质解决 单的最短

路径问题。

七、大单元教学难点

几何直观与空间想象能力的培养 :由 于八年级学生的几何直观和空间想象能力 尚处 于发展 阶段 因此

教学过程中 用多样 的教学 手段来帮助 学生 建立 直观感受并发展空间想象能力。

逻辑推理与 明能力的提升 等腰三角形的性质与判定以及最短路径问题的求解过程中 及一定的逻辑

推理和 明活动,这对于 分学生 来说 可能 在一定的 困难 因此 在教学过程中 要注重引导学生理解

过程并培养他们的逻辑推理能力。

八、大单元整体教学思路

一、教学 背景 目标 设定

《轴对称》是初中数学中极 美感和实用价值的章节,它不仅是 面几何的重要 组成部 分, 是培养学

生空间观念和 美能力的重要 径。根据《义 数学课程 2022 年版 》的要求,本章的教学旨

在使学生理解轴对称的基本概念,掌握画轴对称图形的方法,探索并应用轴对称的性质解决实际问题,进一

步培养学生的几何直观、逻辑推理和 创新 能力。

知识与技能

理解轴对称图形和轴对称的概念,能识 生活中的轴对称现象。

掌握画轴对称图形的方法,能 用轴对称性质进行图案设计。

理解等腰三角形的性质,掌握等腰三角形的判定方法。

总页数:47
提示:下载前请核对题目。客服微信:diandahome
标题含“答案”文字,下载的文档就有答案
特别声明:以上内容(如有图片或文件亦包括在内)为“电大之家”用户上传并发布,仅代表该用户观点,本平台仅提供信息发布。